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A Functional Phase-Integral 
Method and Applications 
to the Laser Beam 
Propagation in Random 
Media 
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The problem of propagation of a high-intensity light beam in a half-space 
with random inhomogeneities is treated. An exact solution is constructed 
through a functional integral representation. For  a Gaussian random field, 
the exact moments of solution are given explicitly. A functional phase- 
integral method is developed to provide an asymptotic evaluation of the 
moment integrals. The method is applied to two problems in a stochastic 
laser beam propagation in random media with a homogeneous background 
or with a focusing effect. 
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1.  I N T R O D U C T I O N  

In  an  ear l ie r  p a p e r ,  ~n h e r e a f t e r  r e f e r r ed  to  as I, we s h o w e d  h o w  the  m e t h o d  o f  

f u n c t i o n  space  (or  f unc t i ona l )  i n t e g r a t i o n  can  be app l i ed  e f fec t ive ly  to  c e r t a i n  
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problems in wave propagation in an unbounded random medium. To justify 
the smoothing perturbation technique and the direct interaction formalism 
discussed in I, we treated rigorously a random parabolic equation, (m where 
error bounds for these approximations were obtained. Here we shall extend 
an asymptotic method, known as the phase-integral method or the method of 
stationary phase, presented in I to a half-space problem, and then apply it to 
the propagation of a laser beam through a turbulent medium. 

For  this purpose, let us consider the time-harmonic wave propagation 
of a focused beam of the high-intensity light in the half-space x > 0, where 
the wave function u satisfies the reduced wave equation 

Au(r, + k=n=(r, o0 = 0, x > 0 (1) 

Here A denotes the Laplacian operator in the three-dimensional space 
variable r; x is the first component  of  r;  k is a complex wave number with a 
positive imaginary part ;  and n(r, oJ) is the random refractive index, which is 
a random function of r, with oJ in a sample space f~. We assume that the wave 
function u represents the propagation of light due to a source emitted by a 
transmitting laser at x = 0, so that 

u(r)lx=o = uo(p) = A(O) exp[ikr (2) 

where A and r are the prescribed amplitude and phase of the light beam at 
x = 0, and p is the transverse variable of  r = (x, p). Here and hereafter the 
dependence of u on oJ is often omitted when there is no confusion. 

The main objective of  this paper is to determine the moments of  the 
solution to the random equation (1) subject to the boundary condition (2) and 
a radiation condition at ]r[ = 0% x > 0, which will not be written down. We 
shall show that this problem can be solved exactly in terms of Wiener inte- 
grals, which are then evaluated asymptotically for large k. When specified to 
special cases, they yield, among others, some known results obtained by 
different approaches, m,4~ As a by-product, we found that the parabolic equa- 
tion approximation used in high-frequency wave propagation corresponds to 
a unidirectional asymptotic expansion, as shown in the appendix. 

A systematic study on stochastic laser beam propagation was first made by 
Schmeltzer, ~5) using the Rytov method or the logarithmic regular perturbation 
method. (m De Wolf (3~ tried to solve this problem by a combination of 
geometric optics and selected summation of perturbation series. By assuming 
n 2 to be the product of  a random function of x and quadratic in p, the beam 
problem was analyzed by Papanicolaou e t  al.  (7~ after a parabolic equation 
approximation. 
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2. C O N S T R U C T I O N  OF EXACT S O L U T I O N  

To solve the p rob lem (1)-(2) exactly, we extend the r a n d o m  funct ion 
n(r, ~,) symmetr ical ly  with respect  to x. Let  ~(r, co) be the extension defined as 

~(r,  . , )  - ~(x ,  p, o~) = n(x ,  p, ~o), x >_- o 

= n ( - x , p ,  oO, x <<. 0 
(3) 

Consider  the full space, r a n d o m  Green ' s  funct ion G(r, r ' ,  w) which 
satisfies the following equat ion:  

AG(r, r ' ,  w) + k2t~2(r, ~o)6(r, r ' ,  w) = 3(r - r ' )  (4) 

where 3(r) stands for  the Dirac  delta function,  and G is outgoing at  [rl = oo. 
Then it is well known that,  by a reflection principle (or me thod  o f  image), the 
solution to the half-space p rob lem (1)-(2) can be represented in te rms o f  the 
full space Green ' s  funct ion according to 

u(r) = - 2(O/Ox) f G(r, P')U0(O') dp' 
,JR 2 

(5) 

in which u0 is defined as in (2), and  the integrat ion is over  the whole plane 
x' = O. 

As shown in I, the radia t ion prob lem (4) can be t r ans fo rmed  into an 
initial value p rob lem for  a parabol ic  equat ion,  and  is thereby solved by a 
functional  integrat ion:  

{ [fo ] G(r, r ' )  = (ik)-1 E~ exp ik ~2(z(~-) + r')d~- z(0) = 0, 

z(t) = r - r"~b(t,  r - r ' )  dt 
) 

(6) 

where ~b(t, r) is the complex heat  kernel defined to be the principal branch  of  

~b(t, r) = (k/47rit) 3/2 exp(ikr2/4t) (7) 

and Ez{. ]z(0) = 0, z(t)  = r} designates the condi t ional  Wiener  expectat ion 
with the complex variance pa ramete r  2ik -1, given that  the paths z(~-) s tart  
f rom z = 0 at ~- = 0 and reach z = r at ~- = t. Alternatively,  we may  view it 
as a Gauss ian  integration over the set C(t, r) o f  cont inuous functions z(~-) on 
[0, t] with z(0) = 0, z(t)  = r. Let  Gt[z] be a smoo th  functional  on C(t, r). 
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Then,  for  computa t iona l  convenience, it is desirable to introduce the sym- 
bolic expression, with ~ = dz/d-~, 

E~{Gt[z]lz(0 ) = 0, z(t) = r)~(t, r) 

= fc~t,r Gt[z] exp{�88 fot [i(T)]~ dr) dw z (8) 

Now, in view of  (5), (6), and (8), the exact r andom solution u can be 
writ ten in the form 

2iO fR fo~fc Uo(~') u(r, to) = ~ ~ ~ .,r-.,~ 

(f; x exp ik ~2(z(~-) + p')d~- 

ikft ) 
+ 4 Jo [i(r)]2 d-~ dp' dt dwz (9) 

where u0(p) is given by (2). 
To  compute  the moments  of  u, we assume that  

n2(r, to) = a(r) + ~/z(r, to), x / >  0 (10) 

where a(r) is the mean of  n2;/z(r, to) is a centered Gaussian random field; and 
is a parameter  with 0 < ~ ~< 1. Let  the angular bracket  ( . )  denote the mathe-  

matical  expectat ion over ~). Then  we have (n 2) = a, (/~) = 0, and the co- 
variance funct ion of  t~ is given by 

(/~(r, to)/z(r', to)) = R(r, r ')  (11) 

Not ing (1), the extended r andom field h 2 has a mean 

a(r) - a(x, o) = a(Ixl, 0) (12) 

and the corresponding covariance function of  ~ is 

/~(r, r') ~ R(x ,  p; x' ,  p') = R([x I, p; Ix'l, O') (13) 

For  m = 1, 2, ..., n, let us define the mth moment  of  u as follows: 

l~,~(r, r2, ..., rm) = (ul(r l ,  to)u2(r2, to ) . - .  Um(rm, to)) (14) 

where 

uj = u for o d d j  

= ff for  e v e n j  

and ~ means the complex conjugate of  u. 

(15) 
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Similar to our  results in I, all moments  rm can be obtained explicitly for the 
Gaussian case. To this end, let us introduce the following abbreviat ions:  

fo tt Mj(t3 = a(z~(,) + p / )d , ,  j = 1, 2, ..., m (16) 

Ftt l,t~ 

s~(t~, t,) = Jo Jo k(z~(~O + pj', z,(~) + ~,') d~  d~  

j , / =  1 ,2  . . . .  , m  

(17) 

Then, noting (9)-(17), it is not  difficult to verify that, (1) for m = 1, 2, ..., 

Pro(r1, r2, ..., rm) 

= ( -  1) m+ 1(20~(k1~ . . .  k~)- i  
8m 

OXz 8x2'''aXm 

+ (y.fo  , , 

• exp - �89 fifiSjj(tj, tj) 
j= l  

m fo" ) �89 ~ fi3fllS~z(ti, t,) + �88 imkm [:~j(T)] 2 dT 

],l=1 

x (do1' dtl dwzO... (doff dtm dwzm) (18) 

where Cj = C(tj, U - P/),/3j = kjE, and convent ion (15) applies to i, k, uo, 
and ~b. 

For  an arbitrary r andom field ix, other than a Gaussian process, the exact 
moments  can be expressed in terms of  its characteristic functional,  as shown 
in I. Also, we wish to point  out that, for tz Gaussian,  there is a finite proba-  
bility that  n 2 may  become negative. However,  the probabil i ty o f  the tail 
distribution is hopefully small, at least, when ~ is small. 

3. A S Y M P T O T I C  M E T H O D  

In this section, we shall evaluate the moments  F m asymptotically as 
k --~ co, with fi held fixed. For  m = 1, (18) reads 

rl(r) = 2ik- z(8/Sx)J(r) (19) 
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where J is the integral 

' 

X exp{ik[M(t)+ l for [:~(r)] 2 dr]-�89 t)) 

x d O' dt dwz (20) 

In view of the definitions (16) and (17), the above integral J can be put in the 
form 

J(r) = uo(O')K(t, r, P') do' dt (21) 
2 

Here 

Pao-Liu Chow 

/ .  
K(t, r, p') = | C,[z] 

Jc ( t , r - p ' )  

x exp {1[i(r)12 + d[z(r) + O']} dr dwz (22) 

and the functional Gt is defined as 

[ fo'f  ] Gt[z] = exp -1/32 /~(z(rl) + O', z(r2) + O') drl d'c2 (23) 

Now we apply the phase-integral method (or the Laplace method, in 
general) to (21) to obtain an asymptotic evaluation for large k. This will be 
carried out in two steps. The first step consists in seeking the extremal paths 
z*(r) over the class C(t, r - O') that render the exponent in (22) stationary. 
The variational problem for determining z* yields the Euler equation 

1 d2z(r)  V~(z(r))  = O, 0 ~< r ~< t 
2 d~ -2 (24) 

z(O) = O, z(t) = r - O' 

where V is the gradient operator. 
Suppose that the boundary-value problem (24) has a unique solution 

z*(r). Then, approximating the phase functional in (22) by a quadratic 
functional about z*, we have, for large k, 

K(t, r, O') ~ Kl(t, r, O') (25) 



Laser Beam Propagation in Random Media 99 

and 

Kl(t, r, 0") 

= exp(ik f~ {�88 + d[z*(~)]} dr) 

• fc<t,o)Gt[z* + y] exp[�89 f f  y(r) .(VV~[z(r)]) .y(r)dr 

+�88 (26) 

in which y = z - z*, and VV6, a second order tensor, denotes the second 
gradient of 4. If there exist more than one solution to (24), then (25) becomes 
the sum over all contributions due to the multiple solutions z*. When the 
mean function a(r) is constant, (26) can be greatly simplified by evaluating 
Gt[y] at z* to give 

Kl(t, r, p') ~ Gt[z*]~b(t, r - p') exp(ikat) (27) 

The second step requires expressing/(1 in the polar form 

K~(t, r, O') = A~(t, r, O') exp{ik~x(t, r, 0')} (28) 

Then we use (28) and (22), which is in turn used in (21) to get 

J(r) ~ uo(o')A~(t, r, O') exp{ik~l(t, r, 0')} do' dr (29) 
2 

Noting the expressions for uo and ~ given by (2) and (7), respectively, the 
integral (29) is of the Laplace type. Hence the conventional Laplace method is 
applicable here. To proceed, it is found convenient to first locate the station- 
ary points along the t axis for a fixed 0'. They are the solutions t*(r, O') to the 
following equation: 

8~x(t, r, p')/8t = 0 (30) 

For abbreviation, let us set 

fo ~ exp{ik(~(t, r, O')} = A2(r, O') exp{ik~b2(r, O')} (31) dt 
and 

A3(r, 0') = A(o')Az(t*(r, P'), r, 0')A2(r, 0') (32) 

Then, taking (2) and (27)-(32) into account and performing the t-integration, 
(29) becomes 

A3(r, O') exp{ik[q~(0') + ~2(r, 0')]} do' (33) J(r) 
2 
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It follows from (19) that 

fR f0A3(r, p') 0q~2(r, p')} Fl(r) ~ 2ik-1 3 ~ -~x + ikA3(r, p') Ox 

+ exp{ik[~(p') + ~2(r, O')]} dp' (34) 

Therefore the total phase of the above integral is q~ + 42, which is 
stationary when 

V'qS(p') + V'~2(r, 0') = 0 (35) 

Here V' denotes the gradient operator in p'. Let O' = p*(r) be a solution of 
(35) and let, for j, l = 1, 2, 

dj,(r) - , , [q~(p') + ~2(r, P')]p,=p*~r) (36) 
~Pj (~Pz 

Then, corresponding to each p*, the main contribution to the integral (36) 
comes from the neighborhood of p* so that 

Pl(r) ~ 2ik-1Aa(r, p*(r))exp{ik[~b(p*(r)) + ,~2(r, p*(r))]} 

x f~2 exp{�89 ,~l dzm(r)O/Pm'} dP' 
2 

- Idet D(r)l ~j~ Aa(r, p*(r)) exp{ik[~(p*(r)) + ~2(r, p*(r))]} (37) 

where D(r) is the diagonalized form of the symmetric matrix [d~j(r)], and 
det D stands for the determinant of D, which is assumed to be nonzero. The 
singular points at which det D(r) vanishes correspond to the caustics for the 
mean wave. This completes the asymptotic evaluation of the first moment F~. 

For higher moments (m > 1) under the  same limits, k - +  oo with 
/3 = ke held fixed, the computations turn out to be similar to the case for 
m = 1. Since the m-iterated integral (20) with respect to t, p', and z(r) are not 
coupled through the mean field a(r), the asymptotic evaluation can be done 
by treating the m-fold integrations independently. The stationary path 
zj*(r), j = 1, 2, ..., m, corresponding to the j t h  integration is determined in 
exactly the same way as the case for m = 1 indicated above. 

However, the asymptotic evaluation becomes much more complicated 
under the different limits when k ~ 0% ke 2 = O(1) [/3 = O(k)] or when 
k -+ 0%/3 = k 2 (E = 1). Then the Euler equation (24) becomes a nonlinear 
integrodifferential equation involving the covariance R (see Ref. 1) and there 
exist no real solutions. This gives rise to a difficult mathematical question: 
Can we deform the " p a t h "  of integration in function space from the class 
C(t, r) to a certain class of complex functions containing the complex 
stationary paths z*(r) and C(t, r), similar to the finite-dimensional case, and 
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how should it be done ? Another puzzle, is this. For E = 1 we can apply the 
asymptotic method to the random solution (9). The random Euler equation, 
similar to the result of the geometric optics approximation, admits a real, 
random solution (see Ref. 6). Since the asymptotic approximations executed 
before and after taking the expectation of the random solution seem to yield 
different results for moments, the question is which is physically correct and 
why ? In view of the above difficulties, the asymptotic evaluation for a large k 
and a fixed /3 seems to be the only feasible one to facilitate the actual 
computations. 

4. APPL ICATIONS TO LASER BEAM P R O B L E M S  

Let us apply the phase-integral method developed in Section 3 to two 
problems in laser beam propagation in turbulent media. The first problem is 
concerned with propagation of a laser light through a random medium with 
a homogeneous background, such as the turbulent atmosphere, (4~ and the 
second problem pertains to its propagation in a focusing medium with 
random inhomogeneities, such as a hot gas lens. (8,9~ 

4.1. Homogeneous Random Media  

In this case, the mean a(r) is a constant which can be taken to be one, and 
the covariance R(rl, r2) = R(rl - r2). The solution to the Euler equation is 
simply 

Z*(T) = (~-/t)(r -- 0') (38) 

In view of (38) and (23), (27) becomes 

1 2 t ~ _ p,)]  K~(t, r, 0'),,~ explikt --2/3 fo fo R[ 2 L ~  ( r -  J drt dT@ (39) 

By definition (28), we see that 4" = t, and (30) implies that 

t* = �89 - o'l (40) 

Upon using (40) in (29) and integrating it out in t, the result (30) reduces to 

Ii(r) ~ ikfR2 A(p')AI*(r, 0') exp{iklr4.1r- 0'[_ +0,1ik4(0')} do' (41) 

where, with t* given by (40), 

( 1 t't* rt* ~f~'l - T2 0,)] 
Al*(r, 0') = exp~--~/32Jo Jo R[----/-+---(r -- ] dr1 ritz} (42) 
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According to (19), we get 

iks  x 
P l ( r ) ~  -~-~ ~ ] r - p ' l  2 

[ , l x 1 iklr - 0'l + ~ ~r In Al*(r, 0') A(0') 

x Al*(r, 0') exp{ik[~b(0') + I r - 0'1} do' (43) 

Similarly, the second and higher moments can be computed. For brevity, 
we give only the following results for the second and fourth moments, letting 
t;* = �89 - 0;'1: 

k l k2 ( f~  xlx2 [ 1 
r ~ ( n ,  r2) ~ ~ - ~  L~  ~ I n  - o ; I  It2 - o2'1 1 ik~ln - 0;I 

,][ 1 
+ ~ ~rl In A2*(rl, r2, 01,02') 1 + ik21r2 - Oz'J 

1 a In A2*(rl, r2, 01', 02')] 
ik~. Or2 

and 

x A(Ol')A(o2')A2*(rl, r2, 01', 02") 

x exp{ikz[~b(pz') + I r l  - 0111 

i k 2 [ ~ ( p ; )  + Ir2 - o~ I]} o l  o2 

1 6 I rj - m l - - -  - -  t 
I'4(rl ..... r4) ~ 2"'" 2 j = l  

x [1 + ikjl(? 1); - m'l 

ij a , ] 
+ ~ ~ In A,*(rz, ..., r~, Pl ,  -.., P4') A(p/) 

x A~*(rl ..... r~, Pl', .-., 0~')} 

x exp ijkj[~b(0/) + IrJ - 0Jl] dol'"'do~' 
kj= i 

(44) 

(45) 
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where our convention (15) is applied to ij, kj, and/3j, and for m = 2, 4 

Am*(rl, ..., rm, PI', ..., Pro') 

{ -~j~lf[cf[ c ~F'l-r2 ] 
= exp - R/t--SF-- (rj - p/)  d% d% 

"= L J 

'2 fT o "[ ] ) + ~ fisflz k r, (rj -- p/)  - r__& ,#, ~ 6* (r, - p/) dr, dr2 (46) 
j,l=l 

We note that, when AI* - 1, (43) reduces to the case of  propagation in a 
homogeneous medium. <*~ The effects of  random fluctuations on the moments 
at high frequencies are completely described by the functions Aj* appearing 
in Eq. (46). To simplify the results further, let us specify the aperture field as 
follows: 

1 2 
u(O,o) = Aoexpf~ ( ~  ~ ao2)p ) (47) 

which is the profile of a Gaussian beam with a maximum amplitude Ao, the 
initial effective beam radius ao, and the radius of  curvature of  the focused 
wave front Ro. By a comparison with (2), we get 

A(p) = Ao exp(p2/Zao 2) (48) 

~(p) = p~/2Ro (49) 

In view of  (43), q~I(P) = [r - p[, and noting (39), Eq. (33) for the stationary 
point 0* reads 

(1/Ro)e* - Ir - O*[-~(p - p*) = 0 (50) 

which can be solved for p* approximately for a large x, 

p* = (Ro/x)p + O(1/x2), x >> Ro, x >> IP] (51) 

Corresponding to (51), it can be shown easily that  

D l / Z ( r ) : ( ~ o + l )  +O(~-~2 ) (52) 

When (51) and (52) are used in (37) with the terms of O(1/x 2) neglected, we 
obtain 

R~ { [~-~ l k~,2 ( "r' ]) 
Vl(r) ~(r)(x + Ro) 1 -- (ik)-i - -~ R(z) dr 

,aO 

• exp ik~(r) + ~  ik--%o x 2 

- 5 ( r )  d r )  k2JJo  [2~(r) - r]R(r) (53) 
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where, for simplicity, the random refractive index is assumed to be isotropic 
and ~ is defined as 

~(r) = [r - (Ro/x)ol (54) 

In a similar fashion, the second moment (44) can be simplified to give 

2 2 

(1 k,2f~r,,,2 )] 
• ~ + R(~(rl) - 2 r )d r  

.JO 

+ ~/c e {(rz)fl z=~ (x~ + Ro)~(r 3 

{ ~( ~olt~l ~ x exp izk~(r~) + ~ izk~ - ao ] \ xd  

_ r ~ ( r o  dr} k&~Jo [2~(r,) - T]R(r) (55) 

To compute the intensity/ ,  we let rl = r2 = r in (55) and assume that the 
wave number k is real to get 

( [ ( r  k2&(~("~ 12} R~ 1 + 1 ~ ) 
I(r) = F2(r, r) ~ (x + Ro)2~2(r) k-~ 2 do R(r) dr 

• exp(-a~-~ ( ~ )  z kZ&(  ~(r' dr} (56) T - 2 o  [2~(r) - fiR(r) 

Far along the beam axis, ~ = 0 and x ---> o% (53) and (56) yield the following 
simple expressions: 

( fJ f; } • exp �88 2 rR(r) dr + ikx - �89 R(T) dr (57) 

I(x) ~ Ro2{1 + k~, '[fo ~ R(z) dr] 2} 

{ ~o ~ fj ) x exp �89 z rR(T) dr - k%2x R(r) dr (58) 

We see clearly that both the mean field and the intensity decay exponentially 
with a rate proportional to fo  R(T) dr. In fact we have I(x) = Fl(x)Pl(x). 
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Therefore, along the beam axis, fluctuations about the mean value are negli- 
gible. The fourth moment P4 can also be computed. The physical significance 
of our results and comparison with results obtained by other workers will be 
discussed elsewhere. For example, one can show that, by a Fresnel integral 
and other approximations, our general results (54) and (56) yield the results 
obtained in Refs. 3 and 4 by different methods. 

4.2.  Lens-L ike  R a n d o m  M e d i a  

For a focusing gas lens with random inhomogeneities, the mean field 
a(r) is assumed to be of the form 

a(r) = 1 - �88 2 - ~21" 2~,22 (59) 

where i~ = (pl, p2); ql, q2 are some positive constants; and the correlation 
function R is assumed to be homogeneous. Corresponding to (59), the Euler 
equation (24) takes the form 

d2z 
dT---- 5 + q.z = 0, z(0) = 0, z(t) = r -- p' (60) 

where q = (0, ql 2, q22). 
The solutions to (60) are given by 

z sin q j  , zz* =Tx,  z ] + l - ~ ( p j - p j ) ,  j =  1,2 (61) 

Upon using (59) and (61) in (26) and evaluating Gt at z*, we obtain 

K,(t, r, I~') Gt[z*] f 
f ~ 

,-~ exp~.~- ~ [y(T)] 2 dr 
�9 J C ( t , O )  

/_k4Jo(l ,=1 ~ qs2Y~+l(r)dr} dwy 

ik x 2 ik 
x exp ikt + -~-7- + -4 

2 

x ~o~ j_~l ql 2 cOs 2q?" " 0/)2 dr} (62) 
(sin qjt) ~ (pj - 

where 

Gt[z*] = e x p ( - ~  fi 2 

f ; s  ~s inqFl-s inq?-2(p ,  } 
x ~) , - - - - - -7-~  x,  s]n q F  - p / )  

j = l  

x dr1 dz2) (63) 
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Aj = (k/4i)qj 2 (64) 

the Wiener  integral of  the exponential  quadrat ic  functional  in (62) can be 
evaluated (11~ and then simplified to give 

2 

Kl(t,  r, p') ~ Gt[z*](4rdk- l t3)- 112 ~ [sin(Ajl/2t) ] -  in 
j = l  

x exp ikt + 7t i k T  + 4 ik qj(cot qjt)(pj - p/)2 (65) 
j = l  

where the principal  branch  of  each root  function is taken.  By a compar i son  
with (28), we get 

x 2 1 2 
r r, p') = t + ~ + ~ . ~  q~(cot qjt)(pj - p/)2 

j----1 
(66) 

and  

x2 
04,~ _ 1 qj2(csc2 qjt)(pj - p/)2 = 0 (67) 
~t 4t 2 4s= ~ 

I t  can be shown that,  when 

x 2 1 2 
t 2 a ~ qj2(pj _ p/)2 > 0 

- - i = 1  

the t ranscendental  equat ion (67) has infinitely many  positive solutions 
t* = tl, t2, ..., tn, ..., as functions of  r and  O'. However ,  the explicit deter- 
minat ion  of  t* in a closed form becomes impossible.  Therefore  we shall not  
carry  out the asympto t ic  evaluat ion for integrals with respect to t and p'. 

By virtue of  (65), (25), and  (21), Eq. (19) yields the following result:  

F~(r) ~ 2ik -1-~x ~ (47rik-lt3)~12~=z [sin(hr z/2 

x2 1 2  1) + t + ~-~ + ~ ~ qj(cot qjt)(pj - p/)2 dp' dt 
j = l  

(68) 
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For higher moments, we shall not write down their lengthy expressions, except 
the second moment F2, which is found to be 

, f f fo~ r~(r~, r~) ~ 4krr ~x-z-~x2 ~ ~ Gqt2[z~*, z2*] 

2 x ~ A(~/) 
ha/2[sin(Al/2h) sin(A~/2tz)] 1/2 

{ [ x? 
x exp i k ( - 1 )  '+1 r + t~ + 4t--~ 

+ 12~ _ _  p;j)2] } ;--~1 qj(cot qjh)(Pzj - 

x dpl' do2' dr1 dr2 (69) 
where k is real and the function 

1 2 R(~'I t-~ xz, = e x p { _  ~ fi2 [~1 f]z f ]  ' z2 

sin qjrl  - sin qjr2 (Pzj -- p;j)2 ) dr1 dr2 
j = 1 sin q]tt 

+ R ~ xl -- % 

~s inqsT1  , 2 ~ s i n q ? - 2 /  , 2) 1} 
j'= 1 sin qFz (o~J - Olj) - i= 1 sin" qjt2 tP2J - P2j) d~-z dr2 (70) 

Although we have been able to obtain the moments by the present 
approach, the results such as (68) and (69) are too complicated to admit 
physical interpretation. The effects of random fluctuations on the beam 
propagation are contained in the functions G~ and Grit2 given, respectively, by 
(63) and (70), and the like for higher moments. Since the correlation function 
R is positive definite, these functions give rise to the decay factors for the 
moments. It is of great physical interest to simplify the results further to 
reveal how the moments are actually modulated by random inhomogeneities, 
yet without destroying the validity of this approximation. This is a nontrivial 
problem which, we hope, will challenge some workers in this field. 

A P P E N D I X :  ON T H E  P A R A B O L I C  E Q U A T I O N  
A P P R O X I M A T I O N  

The parabolic equation approximation to the random reduced wave 
equation (1) is a deterministic approximation. (6'12~ We wish to show that it 
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corresponds to a unidirectional asymptotic expansion of the functional 
integral representation (9) to the half-space problem (1)-(2). To this end, we 
substitute (10), where we set a = 1, into (9) to get 

ox JR2 

{ f2 + exp ikt + ike tL(zl(r), zz(r) + O')dr 

+ 4 J0 [21(r)]2 dr + 4 Jo [~• dr do' dt dwzl dwz• (A.1) 

where we have split the integral with respect to z(~-) into the longitudinal 
component Z~(T) and the transverse component z• Again, we keep 
/3 = ke fixed and carry out a stationary phase evaluation of the integral (A. 1) 
with respect to z~(r) only. The stationary path is easily found to be zl* = 
(r/t)x; when used in (A.1), we obtain 

u(r) ~ 2ik- ~ -~x 2 o (4zrik- ~t) ~/2 exp ik -~ + ikt 

x (fc(t,o-p,)exp(ikef]l~( tx ' z •  O') dT 

+ 4 do [~• d~- dwz• d0' dt (A.2) 

In (A.2), the phase in the t-integration is [(x2/4t) + t], which is stationary 
when t* = x/2. With this stationary t*, (A.2) can be asymptotically reduced 
to 

u(r) ~ (ik)-l(~/~x)~ fc(,,p-o.) uo(O') 
J R  2 

f fx/2 • exp ikx + ikeJo /~(2r, Z• + p')dr 

g, xl2 ) 
+ �88 [i• 2 dr d O' dwz• (A.3) 

Letting cr = 2r in (A.3), it can be rewritten as 

u(r) ~ eikX[v(r) + (ik) -1 Ov(r)/~x] (A.4) 
where 

v(r) = f. fc,t., Uo(O') exp{�89 ~(~,z• + o') d~ 

+ i k f :  [~(~)]2 da}dp' dwz• (A.5) 
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In  view o f  (A.5), v satisfies the parabol.ic equat ion 

Dv/Ox = (i /2k)(A~ + l~)v 

and 

vlx=0 = u0(o) (a .6)  

Since the parabolic equat ion approximat ion  is given by (A.4) with the term 
( i k ) - z  Ov/Ox neglected on the r ight-hand side, our  result (A.4) constitutes an 
improved parabolic approximat ion,  though  the correct ion term may  be 
small for large k. 
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